1). What are the first 4 terms of the sequence of partial sums of $\sum_{n=1}^{\infty} n$! (2 points)

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} n!=1!+2!+3!+\cdots & S_{1}=1!=1 \\
& S_{2}=1!+2!=3 \\
& \delta_{3}=1!+2!+3!=9 \\
& S_{4}=1!\times 2!+3!+4!=33 \\
\text { Sequence of Partial sums } \\
1,3,9,33
\end{array}
$$

2) For the following convergent series,
a) Use Desmos to generate a list of the first 10 partial sums. (Attach a screen shot of the results).
b) Estimate the sum, correct to 4 decimal places
c) How many terms of the sequence of partial sums did your group need in order to make an estimate?
https://www.desmos.com/calculator/bm5ygqipv5
a) $\sum_{n=1}^{\infty} \frac{1}{n e^{n}}$

$f(x)=\left(\frac{1}{x e^{x}}\right)$

3) For each of the following,
a) Does the series converge? Why/Why not?
b) If so, what is the exact sum?
a) $\sum_{n=1}^{\infty} \frac{n^{2}-3 n}{6 n^{2}-5 n+9} \quad \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-3 n}{6 n^{2}-5 n+9}=\frac{1}{6}$

Since $\lim _{n \rightarrow \infty} G_{n} \neq 0$, the serves $\sum_{n=1}^{n} \frac{n^{2}-3 n}{6 n^{2}-5 n+9}$ diverges by the Test for Divergence
b) $\sum_{n=1}^{\infty} \frac{4^{n-1}}{5^{n}}=\sum_{n=1}^{\infty} \frac{1}{5}\left(\frac{4}{5}\right)^{n-1}$ geometric with $a=\frac{1}{5}, r=\frac{4}{5}$
since $|r|=\frac{4}{5}<1, \sum_{n=1}^{\infty} \frac{4^{4-1}}{5^{n}}$ converges and the
sum $=S=\frac{a}{1-r}=\frac{1 / 5}{1-1 / 5}=1$

So the $n^{\text {th }}$ partial sum is

Telescop ing series, sn_{n} collapses.
series converges

$$
S_{n}=1+\frac{1}{2}-\left\{\frac{1}{n+1}-\frac{1}{n+2}\right\} \quad \lim _{n \rightarrow \infty} S_{n}=\frac{3}{2}
$$

$$
S=3 / 2
$$

note: should show both of these in S_{n}

